Using Abstraction 1n
Multi-Rover Scheduling

Bradley J. Clement and Anthony C. Barrett
Artificial Intelligence Group

Jet Propulsion Laboratory
{bclement, barrett}(@aig.jpl.nasa.gov

Motivation

Current trends within NASA programs point
 toward a need to coordinate flight projects to:
— manage shared resources or

— generate multiple sensor science products.

Operations staffs must coordinate the schedules of
these interacting spacecraft (or instruments).

Reasoning about schedules at abstract levels offers
performance advantages in resolving schedule
coordination conflicts.

Resolving conflicts at abstract levels preserves
choices in plan refinement for flexible execution.

Contributions

Algorithm summarizing metric resource usage for abstract
activities

Complexity analysis showing that iterative repair
scheduling operations are exponentially cheaper at higher

levels of abstraction when summarizing activities results in
fewer constraints and temporal constraints

Experiments in a multi-rover domain that support the
analysis

Comparison of search techniques for directing the
refinement of activities in an iterative repair planner that
show how summary information can further improve
performance in finding solutions

Resource Usage

| interval of task

* Depletable resource
— usage carries over after end of task
— gas=gas -5
* Non-depletable
— usage is only local
— zero after end of task
— machines = machines - 2
* Replenishing a resource
— negative usage
— gas=gas+ 10

— can be depletable or
non-depletable

Summarizing Resource Usage

experiment
sunbathe analyze
soak rays goak rays soak rays take sample take image
use -5 use -5 use-5 P use 20
dig collect sample
use 60 use 30
| experiment | | experiment ,
r . I I —
sgak rays , soak rays, soak rays soak rays , soak rays, soak rays
r_ 5 1 5 I 5 1 I 5 I 5 1 5 1
: dig |, collect sample, ' take image ,
I 60 | I 30 1 | 20 L
F —+— ! { > I — { I >
55 50 50 80 75 75 | 15 10 5 5

Battery energy usage for two decompositions

Summarizing Resource Usage

summarized resource usage =

< local min_range, local_max range, persist range >

”

< ['79 "2019[309 40]’9[109 20] >

Captures uncertainty of decomposition choices and
temporal uncertainty of partially ordered actions

Resource Summarization Algorithm

Can be run offline for a domain model
Run separately for each resource
Recursive from leaves up hierarchy

Summarizes parent from summarizations of
immediate children

Considers all legal orderings of children

Considers all subintervals where upper and lower
bounds of children’s resource usage may be reached

Exponential with number of immediate children, so

summarization 1s really constant for one resource and
O(r) for r resources |

Decomposition Strategies

« Expand most threats first (EMTF)

— instead of moving activity to resolve conflict,
decompose with some probability (decomposition rate)

— expands activities involved in greater numbers of
conflicts (threats)

» Level expansion

— repair conflicts at current level of abstraction until
conflicts cannot be further resolved

— then decompose all activities to next level and begin
- repairing again
» Relative performance of two techniques depends
decomposition rate selected for EMTF

Decomposition Strategies

FTF (fewest-threats-first) heuristic tests
each decomposition choice and picks those
with fewer conflicts with greater
probability.

rover_move |
pathl path2 path3
10 conflicts 20 conflicts 15 conflicts

Multi-Rover Domain

2 to S rovers
Triangulated field of 9 to 105 waypoints

6 to 30 science locations assigned according to
a multiple travelling salesman algorithm

Rovers’ plans contain 3 shortest path choices
to reach next science location

Paths between waypoints have capacities for a
certain number of rovers

Rovers cannot be at same location at the same
time

Rovers cannot cannot cross a path in opposite
directions at the same time

Rovers communicate with the lander over a

shared channel for telemetry--different paths

require more bandwidth than others

Experiments in ASPEN for a Multi-Rover Domain

« Performance improves greatly when activities share a common resource.

6000 6000
500 5000
]]
-] k-]
5 g
§ 400 § 4000
=] =]
o o
O 300 O 3000
s s
B 2
8 200 g 2000
3 8
< <

-
o
o

1000

0
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Summary Information + Aggregation CPU Seconds Summary Information + Aggregation CPU seconds J
Rarely shared resources (only path variables) Mix of rarely shared (paths) and often shared

!

(channel) resources

o

-
[~
[=1

Summary Information + Aggregation CPU seconds

. » CPU time required increases dramatically ;[
for solutions found at increasing depth | g
levels. | = | g oo

é 5000 & ?'c:sooo
g £

] 4000 & g 2000
T8 8

§ § 300 < 4000
é g 200!

G

£

£

0 1000 2000 3000 4000 5000 6001

Often shared (channel) resource only

Average Depth of Hierarchies in Solution

..

Experiments in ASPEN for a Multi-Rover Domain

6000
5000
4000
3000
2000
1000

0

 Picking branches that result in
fewer conflicts (FTF) greatly
improves performance.

Summary Information
CPU Seconds

0 1000 2000 3000 4000 5000 6000
Summary Information + FTF CPU Seconds

1200 ——A
——Alevel-decomp
_a-B
- —-B level decomp
..o-C

.. C level decomp

» Expanding activities involved
in greater numbers of conflicts
is better than level-by-level 80
expansion when choosing a
proper rate of decomposition

100!

60

CPU seconds

40

20!

0 5 10 15 20 25 30 35
EMTF Decomposition Rate

Complexity Analysis
 [terative repair planners (such as ASPEN) heuristically pick conflicts and resolve

them by moving activities and choosing alternative decompositions of abstract
activities.

level branching

0 &« factor b
1 A /\ /\
' d e o o
1 2 n

<« Cconstraints
<4+

, == — > & > per hierarchy
v < <« <> < >
: <> <> PES
variables < <+ > < > “—S >
< >
\

» Moving an activity hierarchy to resolve a conflict is O(vnc?) for v state or resource
variables, » hierarchies in the schedule, and ¢ constraints in hierarchy per variable.

* Summarization can collapse the constraints per variable making ¢ smaller.

» In the worst case, where no constraints are collapsed because they are over

different variables, the complexity of moving and activity hierarchies at different
levels of expansion is the same.

Complexity Analysis

level branching |

0 & factor b ,

1 A /\ /\

d o o o)
1 2 n

<) Cconstraints
<>

, — — > =& > per hierarchy
¢ < P > <> >
: <> <> <>
variables * <+ > < > < >
< - >
\

» In the other extreme, where constraints are always collapsed when made for the
same variable, the number of constraints ¢ is the same as the number of activities
and grows &’ for b children per activity and depth level i. Thus, the complexity of
scheduling operations grows O(vnb%).

» Along another dimension, the number of temporal constraints that can cause
conflicts during scheduling grows exponentially (O(5%)) with the number of
activities as hierarchies are expanded.

» In addition, by using summary information to prune decomposition choices with
greater numbers of conflicts, exponential computation is avoided.

* Thus, reasoning at abstract levels can resolve conflicts exponentially faster.

